skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Tianwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. Free, publicly-accessible full text available August 13, 2026
  3. Free, publicly-accessible full text available August 13, 2026
  4. Free, publicly-accessible full text available April 15, 2026
  5. Quantum key distribution offers a promising avenue for establishing secure communication networks. However, its performance is significantly hampered by the conventional two-level information carriers (i.e., qubits) due to their limited information capacity and noise resilience. A fundamental approach to overcoming these limitations involves the adoption of high-dimensional qudits. Practical qudit platforms require robust propagation, outstanding controllability, and extreme compactness, to which integrated photonics provides a promising solution. Here, we achieved, for the first time, microlaser-enabled high-dimensional quantum communication through leveraging spin-orbit photon qudits, where the dynamical generation and manipulation of these multi-degrees-of-freedom complex quantum state are realized by a non-Hermitian-physics-driven integrated microlaser quantum transmitter. Such a microlaser photon manipulation, as a novel route towards high-dimensional quantum state generation, promises high energy efficiency, along with fast, compact, and precise qudit state reconfigurability. The four spin-orbit eigenstates emitted by the microlaser possess the same spatial-temporal structures, ensuring homogeneity between all qudit states used for key distribution, which effectively eliminates propagation dephasing and walk-off problems, thereby delivering the high-dimensional spin-orbit secret key generation to construct a robust quantum link. The demonstrated long-term system stability showcases the practical potential of the microlaser quantum transmitter, providing a critical step towards compact, high-information-capacity quantum communication networks. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  6. Free, publicly-accessible full text available January 2, 2026
  7. Free, publicly-accessible full text available December 2, 2025
  8. We develop 5GBaseChecker— an efficient, scalable, and dynamic security analysis framework based on differential testing for analyzing 5G basebands' control plane protocol interactions. 5GBaseChecker first captures basebands' protocol behaviors as a finite state machine (FSM) through black-box automata learning. To facilitate efficient learning and improve scalability, 5GBaseChecker introduces novel hybrid and collaborative learning techniques. 5GBaseChecker then identifies input sequences for which the extracted FSMs provide deviating outputs. Finally, 5GBaseChecker leverages these deviations to efficiently identify the security properties from specifications and use those to triage if the deviations found in 5G basebands violate any properties. We evaluated 5GBaseChecker with 17 commercial 5G basebands and 2 open-source UE implementations and uncovered 22 implementation-level issues, including 13 exploitable vulnerabilities and 2 interoperability issues. 
    more » « less